login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347125
Möbius transform of A341529, sigma(n) * A003961(n).
3
1, 8, 19, 54, 41, 152, 87, 342, 305, 328, 155, 1026, 237, 696, 779, 2106, 341, 2440, 459, 2214, 1653, 1240, 695, 6498, 1477, 1896, 4675, 4698, 929, 6232, 1183, 12798, 2945, 2728, 3567, 16470, 1557, 3672, 4503, 14022, 1805, 13224, 2067, 8370, 12505, 5560, 2543, 40014, 6809, 11816, 6479, 12798, 3185, 37400, 6355
OFFSET
1,2
COMMENTS
Multiplicative because A341529 is.
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A341529(d).
a(n) = A346239(n) + A347124(n).
Multiplicative with a(p^e) = q^(e-1)*(p^e*(q*p-1)-q+1)/(p-1), where q = A151800(p). - Sebastian Karlsson, Sep 02 2021
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = (1/zeta(3)) / Product_{p prime} ((p^2-q)*(p^3-q))/(p^4*(p-1)) = 7.6530842... , and q(p) = A151800(p). - Amiram Eldar, Dec 24 2023
MATHEMATICA
f[p_, e_] := Module[{q = NextPrime[p]}, q^(e-1) * (p^e * (q*p-1)-q+1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2023 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A341529(n) = (sigma(n)*A003961(n));
A347125(n) = sumdiv(n, d, moebius(n/d)*A341529(d))
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 24 2021
STATUS
approved