|
|
A347077
|
|
Numbers m such that sigma(m) / tau(m) = sigma(m - 1) / tau(m - 1) + sigma(m + 1) / tau(m + 1).
|
|
0
|
|
|
15063, 18519, 49841, 137607, 179943, 203345, 412763, 421307, 517334, 881851, 1102204, 2003233, 2831435, 3869018, 17378593, 76645063, 107594182, 118012619, 190791881, 418588841, 447287713, 475734745, 632799289, 661709127, 664171759, 900701138, 998754443, 1756922665
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Corresponding values of fractions sigma(m) / tau(m): 5022, 6174, 7128, 45870, 59982, 31008, 111132, 106680, 99636, 220948, 163044, 263160, 449712, 726864, 2278152, ...
|
|
LINKS
|
|
|
EXAMPLE
|
sigma(15063) / tau(15063) = sigma(15062) / tau(15062) + sigma(15064) / tau(15064); 20088 / 4 = 23976 / 8 + 32400 / 16; 5022 = 2997 + 2025.
|
|
MATHEMATICA
|
r[n_] := Divide @@ DivisorSigma[{1, 0}, n]; s = {}; r1 = r[1]; r2 = r[2]; Do[r3 = r[n]; If[r2 == r1 + r3, AppendTo[s, n - 1]]; r1 = r2; r2 = r3, {n, 3, 4*10^6}]; s (* Amiram Eldar, Aug 16 2021 *)
Flatten[Position[Partition[Table[DivisorSigma[1, n]/DivisorSigma[0, n], {n, 900000}], 3, 1], _?(#[[2]] == #[[1]]+#[[3]]&), 1, Heads->False]]+1 (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Apr 19 2024 *)
|
|
PROG
|
(Magma) [m: m in [2..10^6] | (&+Divisors(m) / #Divisors(m)) eq (&+Divisors(m - 1) / #Divisors(m - 1)) + (&+Divisors(m + 1) / #Divisors(m + 1))]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|