login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347079
a(n) is the least prime that is the perimeter of exactly n isosceles triangles with prime sides.
1
2, 7, 17, 41, 89, 149, 229, 281, 461, 401, 557, 761, 941, 929, 1061, 1049, 1321, 1409, 1747, 1721, 1901, 2131, 2237, 2647, 2531, 2609, 3203, 3217, 3089, 3209, 3257, 3607, 3739, 4129, 4733, 4549, 4721, 4637, 5441, 4817, 5557, 5689, 5393, 6379, 6977, 6857, 7393, 7253, 6961, 7451, 7901, 7561, 8609
OFFSET
0,1
COMMENTS
a(n) is the least prime p such that there are exactly n pairs of primes (q,r) with 2*q+r = p and r < 2*q.
LINKS
EXAMPLE
a(3) = 41 because 41 is prime and there are exactly 3 such triangles with perimeter 41, namely with sides (19,19,3), (17,17,7) and (11,11,19).
MAPLE
N:= 10000: # for terms before the first term > N
V:= Vector(N):
p:= 1;
do
p:= nextprime(p);
if 2*p >= N then break fi;
q:= floor(p/2);
do
q:= nextprime(q);
r:= 2*q+p;
if r > N then break fi;
if isprime(r) then V[r]:= V[r]+1 fi;
od
od:
m:= max(V):
A:= Array(0..m):
A[0]:= 2:
for n from 3 to N by 2 do
if A[V[n]] = 0 then A[V[n]]:= n fi
od:
L:= convert(A, list):
if member(0, L, 'm') then L[1..m-1] else L fi;
MATHEMATICA
f[p_] := Count[Select[Range[(p - 1)/2], PrimeQ], _?(PrimeQ[(p - #)/2] &)]; v = f /@ (p = Select[Range[10000], PrimeQ]); p[[TakeWhile[Table[FirstPosition[v, k][[1]], {k, 0, Max[v]}], NumericQ]]] (* Amiram Eldar, Aug 17 2021 *)
CROSSREFS
Sequence in context: A364756 A175660 A365069 * A370304 A375821 A175120
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 15 2021
STATUS
approved