login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346842
E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^3 / 3!.
2
1, 10, 75, 520, 3556, 24626, 174805, 1279240, 9677151, 75750752, 613656836, 5142797660, 44557627661, 398786697398, 3683575764083, 35084121263136, 344242894197456, 3476490965903174, 36104281709286841, 385257741260565844, 4220537246457019687, 47432055430482106880
OFFSET
3,2
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(k,3).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,3) * Bell(n-k).
a(n) = (Bell(n+3) - 6*Bell(n+2) + 8*Bell(n+1) - Bell(n))/6. - Vaclav Kotesovec, Aug 06 2021
a(n) ~ exp(-1 - n + n/LambertW(n)) * (n - LambertW(n))^3 * n^n / (6 * sqrt(1 + LambertW(n)) * LambertW(n)^(n+3)). - Vaclav Kotesovec, Jun 28 2022
MAPLE
b:= proc(n, m) option remember;
`if`(n=0, binomial(m, 3), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=3..24); # Alois P. Heinz, Aug 05 2021
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^3/3!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
Table[Sum[StirlingS2[n, k] Binomial[k, 3], {k, 0, n}], {n, 3, 24}]
Table[Sum[Binomial[n, k] StirlingS2[k, 3] BellB[n - k], {k, 0, n}], {n, 3, 24}]
Table[(BellB[n+3] - 6*BellB[n+2] + 8*BellB[n+1] - BellB[n])/6, {n, 3, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^3/3!)) \\ Michel Marcus, Aug 06 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 05 2021
STATUS
approved