login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346770
Expansion of g.f. Product_{k>=1} (1 - x^k)^phi(k), where phi() is the Euler totient function (A000010).
1
1, -1, -1, -1, 0, 0, 3, 1, 4, 2, 3, -5, 1, -13, -5, -13, -6, -22, 12, -12, 35, 17, 59, 11, 101, -1, 81, -35, 45, -165, 29, -311, -69, -383, -57, -501, 181, -501, 425, -191, 990, -70, 1844, 64, 2305, 183, 2625, -951, 2897, -2701, 1845, -4851, 664, -8824, 670, -12366, 269, -14137, 2884
OFFSET
0,7
LINKS
FORMULA
G.f.: exp(-Sum_{k>=1} A057660(k) * x^k/k).
a(0) = 1, a(n) = -(1/n) * Sum_{k=1..n} A057660(k) * a(n-k) for n > 0.
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^eulerphi(k)))
(PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k^2, 2)/sigma(k^2)*x^k/k)))
CROSSREFS
Convolution inverse of A061255.
Sequence in context: A209919 A116537 A194307 * A048225 A155481 A075148
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 02 2021
STATUS
approved