login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346546
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(-x)/k).
3
1, 1, 1, 2, 15, 44, 485, 1854, 25781, 170288, 2477485, 12571140, 435748665, 2049818198, 64651106637, 628176476186, 18837010964105, 93248340364152, 6695745240354169, 33794005826851192, 2549048418922818525, 20209158430316698922, 1138228671555859916609
OFFSET
0,4
COMMENTS
Exponential transform of A002744.
The first negative term is a(37) = -2641429247236224246927617458359165366254750.
FORMULA
E.g.f.: exp( exp(-x) * Sum_{k>=1} d(k) * x^k / k ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002744(k) * a(n-k).
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(Exp[-x]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Exp[-x] Sum[DivisorSigma[0, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A002744[n_] := Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[0, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002744[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 16 2021
STATUS
approved