login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(-x)/k).
3

%I #11 Aug 17 2022 10:27:07

%S 1,1,1,2,15,44,485,1854,25781,170288,2477485,12571140,435748665,

%T 2049818198,64651106637,628176476186,18837010964105,93248340364152,

%U 6695745240354169,33794005826851192,2549048418922818525,20209158430316698922,1138228671555859916609

%N E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(-x)/k).

%C Exponential transform of A002744.

%C The first negative term is a(37) = -2641429247236224246927617458359165366254750.

%F E.g.f.: exp( exp(-x) * Sum_{k>=1} d(k) * x^k / k ).

%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002744(k) * a(n-k).

%t nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(Exp[-x]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t nmax = 22; CoefficientList[Series[Exp[Exp[-x] Sum[DivisorSigma[0, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

%t A002744[n_] := Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[0, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002744[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

%Y Cf. A000005, A002744, A028342, A346545, A346547, A346548.

%K sign

%O 0,4

%A _Ilya Gutkovskiy_, Sep 16 2021