OFFSET
1,1
COMMENTS
Composite numbers k such that A099377(k) = k.
Since the harmonic mean of the divisors of an odd prime p is p/((p+1)/2), its numerator is equal to p. Therefore, this sequence is restricted to composite numbers.
This sequence is infinite. For example, if p is a prime of the form 8*k+3 (A007520) with k>1, then 2*p is a term.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
20 is a term since the harmonic mean of the divisors of 20 is 20/7.
MATHEMATICA
q[n_] := CompositeQ[n] && Numerator[DivisorSigma[0, n]/DivisorSigma[-1, n]] == n; Select[Range[250], q]
PROG
(PARI) isok(k) = my(d=divisors(k)); (#d>2) && (numerator(#d/sum(i=1, #d, 1/d[i])) == k); \\ Michel Marcus, Nov 01 2021
(PARI) list(lim)=my(v=List()); forfactored(n=20, lim\1, if(vecsum(n[2][, 2])>1 && numerator(sigma(n, 0)/sigma(n, -1))==n[1], listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 01 2021
STATUS
approved