The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346306 Position in A076478 of the binary complement of the n-th word in A076478. 2
 2, 1, 6, 5, 4, 3, 14, 13, 12, 11, 10, 9, 8, 7, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 126, 125, 124, 123 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Michael S. Branicky, Table of n, a(n) for n = 1..16382 (for all words with length <= 13) FORMULA a(n) = 3*(2^d - 1) - n, where 2^d - 1 <= n <= 2^(d+1) - 2. - Michael S. Branicky, Sep 03 2021 EXAMPLE The first fourteen words w(n) are 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, so that a(3) = 6. MATHEMATICA (See A007931.) PROG (Python) from itertools import product def comp(s): z, o = ord('0'), ord('1'); return s.translate({z:o, o:z}) def wgen(maxdigits):     for digits in range(1, maxdigits+1):         for b in product("01", repeat=digits):             yield "".join(b) def auptod(maxdigits):     w = [None] + [wn for wn in wgen(maxdigits)]     return [w.index(comp(w[n])) for n in range(1, 2**(maxdigits+1) - 1)] print(auptod(6)) # Michael S. Branicky, Sep 03 2021 CROSSREFS Cf. A007931, A076478, A171757, A346303, A346304. Sequence in context: A351385 A090665 A347952 * A021826 A331435 A159927 Adjacent sequences:  A346303 A346304 A346305 * A346307 A346308 A346309 KEYWORD nonn,base AUTHOR Clark Kimberling, Aug 16 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 12:08 EDT 2022. Contains 355148 sequences. (Running on oeis4.)