|
|
A346306
|
|
Position in A076478 of the binary complement of the n-th word in A076478.
|
|
2
|
|
|
2, 1, 6, 5, 4, 3, 14, 13, 12, 11, 10, 9, 8, 7, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 126, 125, 124, 123
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Michael S. Branicky, Table of n, a(n) for n = 1..16382 (for all words with length <= 13)
|
|
FORMULA
|
a(n) = 3*(2^d - 1) - n, where 2^d - 1 <= n <= 2^(d+1) - 2. - Michael S. Branicky, Sep 03 2021
|
|
EXAMPLE
|
The first fourteen words w(n) are 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, so that a(3) = 6.
|
|
MATHEMATICA
|
(See A007931.)
|
|
PROG
|
(Python)
from itertools import product
def comp(s): z, o = ord('0'), ord('1'); return s.translate({z:o, o:z})
def wgen(maxdigits):
for digits in range(1, maxdigits+1):
for b in product("01", repeat=digits):
yield "".join(b)
def auptod(maxdigits):
w = [None] + [wn for wn in wgen(maxdigits)]
return [w.index(comp(w[n])) for n in range(1, 2**(maxdigits+1) - 1)]
print(auptod(6)) # Michael S. Branicky, Sep 03 2021
|
|
CROSSREFS
|
Cf. A007931, A076478, A171757, A346303, A346304.
Sequence in context: A351385 A090665 A347952 * A021826 A331435 A159927
Adjacent sequences: A346303 A346304 A346305 * A346307 A346308 A346309
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Clark Kimberling, Aug 16 2021
|
|
STATUS
|
approved
|
|
|
|