login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A345955
Number of isomorphism classes of indecomposable Fano Bott manifolds of complex dimension n.
0
1, 1, 3, 7, 21, 60, 189, 595, 1948, 6455, 21804, 74464, 257311, 896874, 3151564, 11148982, 39680010, 141969156, 510352307, 1842370850, 6676349598, 24277171876, 88556616799, 323959047186, 1188237214539, 4368874535437, 16099389598907, 59449932709972, 219953954227839
OFFSET
1,3
COMMENTS
a(n) is also the number of rooted triangular cacti with 2n+1 nodes (n triangles) with one triangle at the root vertex.
LINKS
Yunhyung Cho, Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, On the enumeration of Fano Bott manifolds, arXiv:2106.12788 [math.AG], 2021. See Table 1 p. 8.
Frank Harary and George E. Uhlenbeck, On the number of Husimi trees. I, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 315-322.
FORMULA
G.f.: (x/2)*(F(x^2)+F(x)^2) where F(x) is the g.f. of A003080 (see the equation (1) in [Harary-Uhlenbeck] or [Cho-Lee-Masuda-Park, Lemma 4.3]).
CROSSREFS
Cf. A003080.
Sequence in context: A182887 A035080 A229188 * A091486 A056779 A183113
KEYWORD
nonn
AUTHOR
Eunjeong Lee, Jun 29 2021
STATUS
approved