login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035080
Number of asymmetric connected graphs where every block is a complete graph.
3
1, 1, 0, 0, 0, 0, 1, 3, 7, 21, 60, 168, 472, 1344, 3843, 11104, 32305, 94734, 279708, 831401, 2485877, 7474667, 22589771, 68594611, 209198103, 640591332, 1968920180, 6072766832, 18791062733, 58321579888, 181524367875, 566488767763, 1772261945866, 5557515157647
OFFSET
0,8
LINKS
FORMULA
G.f.: A(x) = B(x) + C(x) - B(x)*C(x), where B and C are g.f.s of A007561 and A035079, respectively.
a(n) ~ c * d^n / n^(5/2), where d = 3.38201646602027280742981874... (same as for A007561), c = 0.12430588691278777480105... . - Vaclav Kotesovec, Sep 10 2014
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b((n-1)$2)+g(n$2)-add(b((i-1)$2)*g((n-i)$2), i=0..n):
seq(a(n), n=0..40); # Alois P. Heinz, May 20 2013
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i < 1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n-1, n-1] + g[n, n] - Sum[b[i-1, i-1]*g[n-i, n-i], {i, 0, n}]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A091650 A096240 A182887 * A229188 A345955 A091486
KEYWORD
nonn
AUTHOR
Christian G. Bower, Nov 15 1998
STATUS
approved