The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035080 Number of asymmetric connected graphs where every block is a complete graph. 3
 1, 1, 0, 0, 0, 0, 1, 3, 7, 21, 60, 168, 472, 1344, 3843, 11104, 32305, 94734, 279708, 831401, 2485877, 7474667, 22589771, 68594611, 209198103, 640591332, 1968920180, 6072766832, 18791062733, 58321579888, 181524367875, 566488767763, 1772261945866, 5557515157647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..600 FORMULA G.f.: A(x) = B(x) + C(x) - B(x)*C(x), where B and C are g.f.s of A007561 and A035079, respectively. a(n) ~ c * d^n / n^(5/2), where d = 3.38201646602027280742981874... (same as for A007561), c = 0.12430588691278777480105... . - Vaclav Kotesovec, Sep 10 2014 MAPLE g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(binomial(b((i-1)\$2), j)*g(n-i*j, i-1), j=0..n/i)))     end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(binomial(g(i\$2), j)*b(n-i*j, i-1), j=0..n/i)))     end: a:= n-> b((n-1)\$2)+g(n\$2)-add(b((i-1)\$2)*g((n-i)\$2), i=0..n): seq(a(n), n=0..40); # Alois P. Heinz, May 20 2013 MATHEMATICA g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i < 1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n-1, n-1] + g[n, n] - Sum[b[i-1, i-1]*g[n-i, n-i], {i, 0, n}]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *) CROSSREFS Cf. A007561, A035081. Sequence in context: A091650 A096240 A182887 * A229188 A091486 A056779 Adjacent sequences:  A035077 A035078 A035079 * A035081 A035082 A035083 KEYWORD nonn AUTHOR Christian G. Bower, Nov 15 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 00:43 EDT 2021. Contains 343784 sequences. (Running on oeis4.)