

A345843


Numbers that are the sum of nine fourth powers in exactly one ways.


7



9, 24, 39, 54, 69, 84, 89, 99, 104, 114, 119, 129, 134, 144, 149, 164, 169, 179, 184, 194, 199, 209, 214, 229, 244, 249, 259, 274, 329, 354, 369, 384, 409, 419, 434, 449, 484, 489, 499, 514, 569, 594, 609, 624, 633, 648, 649, 659, 663, 674, 678, 689, 693, 708
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Differs from A003343 at term 28 because 264 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.


LINKS



EXAMPLE

24 is a term because 24 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.


PROG

(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 1])
for x in range(len(rets)):
print(rets[x])


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



