login
A345840
Numbers that are the sum of eight fourth powers in exactly eight ways.
8
13268, 14212, 14788, 15667, 16612, 16627, 16707, 16772, 16822, 16852, 16882, 16947, 17363, 17428, 17877, 18117, 18948, 19157, 19237, 19252, 19682, 19828, 20291, 20372, 20612, 20707, 20722, 20772, 20917, 20962, 21253, 21331, 21458, 21478, 21573, 21717, 21763
OFFSET
1,1
COMMENTS
Differs from A345583 at term 4 because 15427 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 10^4 = 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 7^4 + 8^4 + 8^4.
LINKS
EXAMPLE
14212 is a term because 14212 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 8^4 + 10^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 8^4 + 8^4 + 8^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 10^4 = 3^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved