OFFSET
1,1
COMMENTS
Differs from A345582 at term 19 because 13268 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 + 9^4 = 1^4 + 1^4 + 2^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 = 1^4 + 1^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 9^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 9^4 = 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 10^4.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..10000
EXAMPLE
8243 is a term because 8243 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., Jun 26 2021
STATUS
approved