The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345844 Numbers that are the sum of nine fourth powers in exactly two ways. 8
 264, 279, 294, 309, 324, 339, 344, 359, 374, 389, 404, 424, 439, 454, 469, 504, 549, 564, 579, 584, 614, 629, 644, 664, 679, 694, 709, 759, 789, 804, 819, 839, 854, 869, 884, 888, 903, 918, 933, 934, 948, 949, 968, 983, 998, 1013, 1014, 1029, 1044, 1048, 1059 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Differs from A345586 at term 17 because 519 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4  = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4  = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4. LINKS Sean A. Irvine, Table of n, a(n) for n = 1..10000 EXAMPLE 279 is a term because 279 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4. PROG (Python) from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 9):     tot = sum(pos)     keep[tot] += 1     rets = sorted([k for k, v in keep.items() if v == 2])     for x in range(len(rets)):         print(rets[x]) CROSSREFS Cf. A345586, A345794, A345834, A345843, A345845, A345854, A346337. Sequence in context: A157828 A065570 A345586 * A253694 A253701 A255804 Adjacent sequences:  A345841 A345842 A345843 * A345845 A345846 A345847 KEYWORD nonn AUTHOR David Consiglio, Jr., Jun 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 18:55 EDT 2022. Contains 356026 sequences. (Running on oeis4.)