login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345759
E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k / k!).
0
1, -1, -2, -2, 7, 78, 513, 2665, 9406, -13902, -789143, -11806456, -140040408, -1463842226, -13377115923, -95264642343, -198034245627, 11021440199748, 322964047973519, 6617250866231379, 118668721540190350, 1965786734149801960, 30348547043773563767
OFFSET
0,3
COMMENTS
Stirling transform of A185895.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A185895(k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1-(exp(x)-1)^k/k!)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 26 2021
STATUS
approved