login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k / k!).
0

%I #13 Jun 26 2021 08:58:55

%S 1,-1,-2,-2,7,78,513,2665,9406,-13902,-789143,-11806456,-140040408,

%T -1463842226,-13377115923,-95264642343,-198034245627,11021440199748,

%U 322964047973519,6617250866231379,118668721540190350,1965786734149801960,30348547043773563767

%N E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k / k!).

%C Stirling transform of A185895.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a>

%F a(n) = Sum_{k=0..n} Stirling2(n,k) * A185895(k).

%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1-(exp(x)-1)^k/k!)))

%Y Cf. A048993, A140585, A185895, A305547.

%K sign

%O 0,3

%A _Seiichi Manyama_, Jun 26 2021