login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345456
a(n) = Sum_{k=0..n} binomial(5*n+2,5*k).
4
1, 22, 859, 25773, 843756, 26789257, 859595529, 27481113638, 879683351911, 28146676447417, 900729032983924, 28822936611339453, 922338323835136341, 29514778095285204502, 944473434343229560419, 30223143962480773595093, 967140672636207153780796
OFFSET
0,2
FORMULA
G.f.: (1 + x + 44*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>2.
a(n) = A139398(5*n+2).
a(n) = 2^(5*n + 3)/10 + ((-295 + 131*sqrt(5))/phi^(5*n) + (115 - 49*sqrt(5))*(-1)^n*phi^(5*n)) / (10*(41*sqrt(5)-90)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 20 2021
MATHEMATICA
a[n_] := Sum[Binomial[5*n + 2, 5*k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Jun 20 2021 *)
LinearRecurrence[{21, 353, -32}, {1, 22, 859}, 20] (* Harvey P. Dale, Aug 25 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(5*n+2, 5*k));
(PARI) my(N=20, x='x+O('x^N)); Vec((1+x+44*x^2)/((1-32*x)*(1+11*x-x^2)))
CROSSREFS
Sum_{k=0..n} binomial(b*n+c,b*k): A070782 (b=5,c=0), A345455 (b=5,c=1), this sequence (b=5,c=2), A345457 (b=5,c=3), A345458 (b=5,c=4).
Cf. A139398.
Sequence in context: A237605 A231159 A095696 * A322930 A200575 A102995
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2021
STATUS
approved