login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345270
a(n) = Sum_{d|n} d^tau(n/d).
4
1, 3, 4, 9, 6, 20, 8, 33, 19, 40, 12, 108, 14, 68, 50, 161, 18, 225, 20, 278, 80, 148, 24, 850, 51, 200, 136, 600, 30, 1114, 32, 1089, 164, 328, 110, 3387, 38, 404, 218, 2450, 42, 3214, 44, 1892, 558, 580, 48, 12596, 99, 1409, 350, 2958, 54, 8630, 202, 6370, 428, 904, 60, 33042
OFFSET
1,2
COMMENTS
If p is a prime, a(p) = Sum_{d|p} d^tau(p/d) = 1^2 + p^1 = p + 1.
LINKS
FORMULA
a(n) = Sum_{d|n} (n/d)^tau(d). - Wesley Ivan Hurt, Jun 09 2023
EXAMPLE
a(10) = Sum_{d|10} d^tau(10/d) = 1^4 + 2^2 + 5^2 + 10^1 = 40.
MATHEMATICA
Table[Sum[k^DivisorSigma[0, n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]
PROG
(PARI) a(n) = sumdiv(n, d, d^numdiv(n/d)); \\ Michel Marcus, Oct 08 2021
CROSSREFS
Cf. A000005 (tau), A174937, A345271.
Sequence in context: A168341 A083111 A354112 * A132065 A157020 A180253
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 12 2021
STATUS
approved