login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174937
a(n) = Sum_{d|n} d^tau(d).
8
1, 5, 10, 69, 26, 1310, 50, 4165, 739, 10030, 122, 2987358, 170, 38470, 50660, 1052741, 290, 34014263, 362, 64010094, 194540, 234382, 530, 110078305630, 15651, 457150, 532180, 481928838, 842, 656100061960
OFFSET
1,2
COMMENTS
Here tau(n) = A000005(n) = the number of divisors of n.
LINKS
FORMULA
Also a(n) = Sum_{d|n} A007955(d)^2, where A007955(m) = product of divisors of m.
Logarithmic derivative of A174473.
G.f.: Sum_{k>=1} k^tau(k) * x^k/(1 - x^k). - Seiichi Manyama, Oct 14 2021
EXAMPLE
For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(4)^2 = 1^2 + 2^2 + 8^2 = 69.
MATHEMATICA
a[n_] := DivisorSum[n, #^DivisorSigma[0, #] &]; Array[a, 30] (* Amiram Eldar, Oct 08 2021 *)
PROG
(PARI) {a(n)=sumdiv(n, d, d^sigma(d, 0))}
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^numdiv(k)*x^k/(1-x^k))) \\ Seiichi Manyama, Oct 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved