|
|
A345267
|
|
Conjectural order of the torsion subgroup of the group K_n(Z) (the algebraic K-theory groups of the integers).
|
|
0
|
|
|
1, 2, 2, 48, 1, 1, 1, 240, 1, 2, 2, 1008, 1, 1, 1, 480, 1, 2, 2, 528, 1, 1, 691, 65520, 1, 2, 2, 48, 1, 1, 3617, 16320, 1, 2, 87734, 57456, 1, 1, 174611, 13200, 1, 2, 155366, 1104, 1, 1, 236364091, 131040, 1, 2, 1315862, 48, 1, 1, 3392780147, 6960, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is known for n != 0 mod 4 and is related to the Bernoulli numbers via the Riemann zeta function. See Section VI.9 of Weibel's K-book.
K_0(Z) = Z is classical, so a(0) = 1. Rognes proved that K_4(Z) = 0 in 2000 so a(4) = 1.
Otherwise the value of a(4i) = 1 is conjectural. Kurihara observed that this follows from the Kummer-Vandiver conjecture (and in fact is equivalent with it). The Kummer-Vandiver conjecture has been verified for primes up to 163 million, from which it follows that a(4i) must be at least that large if it is not 1.
|
|
REFERENCES
|
Weibel, The K-book: An Introduction to Algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical Society, Providence, RI, 2013. ISBN: 978-0-8218-91322.
|
|
LINKS
|
|
|
FORMULA
|
Let k be the integer part of 1 + n/4.
a(n) is:
1 if n = 0 mod 8
2 if n = 1 mod 8
1 if n = 4 mod 8
1 if n = 5 mod 8
|
|
PROG
|
(Python)
from sympy import bernoulli
def a(n):
n_ = n % 8
k = n//4 + 1
b = bernoulli(2*k)/(4*k)
d = {0:1, 1:2, 4:1, 5:1}
if n_ == 2:
return 2 * b.numerator()
elif n_ == 3:
return 2 * b.denominator()
elif n_ == 6:
return -1 * b.numerator()
elif n_ == 7:
return b.denominator()
else:
return d[n_]
|
|
CROSSREFS
|
Cf. A345225 (the order of the 2-primary subgroup, divides a(n)).
A000367 / A006863 (numerator / denominator of B_2n/4n, where B_m are the Bernoulli numbers).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|