login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345075 E.g.f.: exp( x*(1 + 2*x) / (1 - x - x^2) ). 1
1, 1, 7, 43, 409, 4441, 58351, 872467, 14776273, 278033329, 5759752951, 130094213371, 3181051122217, 83674165333513, 2355245699211679, 70617410638402531, 2246412316372784161, 75551901666095113057, 2678119105038094325863, 99778611508176786458059, 3897493112463397722989881 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * k! * Lucas(k) * a(n-k).

a(n) ~ (1 + sqrt(5))^n * exp(1/(2*sqrt(5)) - 1 + 2*sqrt(n) - n) * n^(n - 1/4) / 2^(n + 1/2). - Vaclav Kotesovec, Jun 08 2021

D-finite with recurrence a(n) +(-2*n+1)*a(n-1) -(n+2)*(n-1)*a(n-2) +(2*n-5)*(n-1)*(n-2)*a(n-3) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Aug 20 2021

MAPLE

A345075 := proc(n)

    option remember ;

    if n = 0 then

        1;

    else

        add(binomial(n-1, k-1)*k!*procname(n-k)*A000204(k), k=1..n) ;

    end if;

end proc:

seq(A345075(n), n=0..42) ; # R. J. Mathar, Aug 20 2021

MATHEMATICA

nmax = 20; CoefficientList[Series[Exp[x (1 + 2 x)/(1 - x - x^2)], {x, 0, nmax}], x] Range[0, nmax]!

a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] k! LucasL[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

PROG

(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(x*(1+2*x)/(1-x-x^2)))) \\ Michel Marcus, Jun 07 2021

CROSSREFS

Cf. A000204, A080833, A100404, A294222.

Sequence in context: A243273 A292502 A294361 * A204733 A195230 A316635

Adjacent sequences:  A345072 A345073 A345074 * A345076 A345077 A345078

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 07 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)