login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A345041
a(n) = Sum_{k=0..n} Stirling2(n,k)^n.
2
1, 1, 2, 29, 3699, 10625002, 607758784933, 868305359018619811, 72322260589630363186583012, 141134946941935843819745493472571577, 21506852953850913182859127590586670415329232127, 213131394708948856925732826175269041102801068792839463406106
OFFSET
0,3
LINKS
MATHEMATICA
Table[Sum[StirlingS2[n, k]^n, {k, 0, n}], {n, 0, 11}]
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)^n) \\ Felix Fröhlich, Jun 06 2021
(Magma) [(&+[StirlingSecond(n, j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
(SageMath)
def A345041(n): return sum(stirling_number2(n, j)^n for j in (0..n))
[A345041(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 06 2021
STATUS
approved