login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344321
a(n) = 2^(2*n - 5)*binomial(n-5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) for n >= 2 and otherwise 1.
5
1, 1, 8, 49, 246, 1157, 5248, 23256, 101398, 436865, 1865136, 7906054, 33319388, 139754994, 583859968, 2430991670, 10092510630, 41794856985, 172699266480, 712220712390, 2932169392020, 12052941519030, 49475929052160, 202838118604680
OFFSET
0,3
COMMENTS
Conjecture: These are the number of linear intervals in the Cambrian lattices of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term a(8) = 101398.
The term a(3) = 49 is the same as the 49 appearing in A344136.
LINKS
Clément Chenevière, Enumerative study of intervals in lattices of Tamari type, Ph. D. thesis, Univ. Strasbourg (France), Ruhr-Univ. Bochum (Germany), HAL tel-04255439 [math.CO], 2024. See p. 152.
FORMULA
a(n) = (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1) + 6*(n-2)*binomial(2*n-4,n-2) + (n-1)*(3*n-8)/(2*(2*n-3))*binomial(2*n-2,n-1) + 2 Sum_{k=1..2n-6} binomial(k,n-1)*(n+1+k) for n >= 3.
a(n) = A344401(n) / A007531(n+3) for n >= 2. - Peter Luschny, May 17 2021
MAPLE
a := n -> if n < 2 then 1 else 2^(2*n - 5)*binomial(n - 5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) fi;
seq(a(n), n = 0..23); # Peter Luschny, May 16 2021
PROG
(Sage)
def a(n):
if n < 2: return 1
if n == 2: return 8
return (3*n-2)*(1/n+1/2)*binomial(2*n-2, n-1)+6*(n-2)*binomial(2*n-4, n-2)+(n-1)*(3*n-8)/2/(2*n-3)*binomial(2*n-2, n-1)+sum(2*binomial(k, n-1)*(n+1+k) for k in range(n-1, 2*n-5))
print([a(n) for n in range(24)])
CROSSREFS
Cf. A344136 for the type A, A344228 for the type B.
Cf. also A344191, A344216 for similar sequences.
Cf. A344400 and A344401 for an alternative approach.
Cf. A007531.
Sequence in context: A319959 A270007 A354558 * A166789 A081901 A283686
KEYWORD
nonn
AUTHOR
F. Chapoton, May 15 2021
EXTENSIONS
Better name from Peter Luschny, May 16 2021
STATUS
approved