OFFSET
0,3
COMMENTS
Conjecture: These are the number of linear intervals in the Cambrian lattices of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term a(8) = 101398.
The term a(3) = 49 is the same as the 49 appearing in A344136.
LINKS
Clément Chenevière, Enumerative study of intervals in lattices of Tamari type, Ph. D. thesis, Univ. Strasbourg (France), Ruhr-Univ. Bochum (Germany), HAL tel-04255439 [math.CO], 2024. See p. 152.
Peter Luschny, Remark regarding A344228 and A344321.
FORMULA
a(n) = (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1) + 6*(n-2)*binomial(2*n-4,n-2) + (n-1)*(3*n-8)/(2*(2*n-3))*binomial(2*n-2,n-1) + 2 Sum_{k=1..2n-6} binomial(k,n-1)*(n+1+k) for n >= 3.
MAPLE
a := n -> if n < 2 then 1 else 2^(2*n - 5)*binomial(n - 5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) fi;
seq(a(n), n = 0..23); # Peter Luschny, May 16 2021
PROG
(Sage)
def a(n):
if n < 2: return 1
if n == 2: return 8
return (3*n-2)*(1/n+1/2)*binomial(2*n-2, n-1)+6*(n-2)*binomial(2*n-4, n-2)+(n-1)*(3*n-8)/2/(2*n-3)*binomial(2*n-2, n-1)+sum(2*binomial(k, n-1)*(n+1+k) for k in range(n-1, 2*n-5))
print([a(n) for n in range(24)])
CROSSREFS
Cf. A007531.
KEYWORD
nonn
AUTHOR
F. Chapoton, May 15 2021
EXTENSIONS
Better name from Peter Luschny, May 16 2021
STATUS
approved