login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344321 a(n) = 2^(2*n - 5)*binomial(n-5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) for n >= 2 and otherwise 1. 5
1, 1, 8, 49, 246, 1157, 5248, 23256, 101398, 436865, 1865136, 7906054, 33319388, 139754994, 583859968, 2430991670, 10092510630, 41794856985, 172699266480, 712220712390, 2932169392020, 12052941519030, 49475929052160, 202838118604680 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Conjecture: These are the number of linear intervals in the Cambrian lattices of type D_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term a(8) = 101398.

The term a(3) = 49 is the same as the 49 appearing in A344136.

LINKS

Table of n, a(n) for n=0..23.

Peter Luschny, Remark regarding A344228 and A344321.

FORMULA

a(n) = (3*n-2)*(1/n+1/2)*binomial(2*n-2,n-1) + 6*(n-2)*binomial(2*n-4,n-2) + (n-1)*(3*n-8)/(2*(2*n-3))*binomial(2*n-2,n-1) + 2 Sum_{k=1..2n-6} binomial(k,n-1)*(n+1+k) for n >= 3.

a(n) = A344401(n) / A007531(n+3) for n >= 2. - Peter Luschny, May 17 2021

MAPLE

a := n -> if n < 2 then 1 else 2^(2*n - 5)*binomial(n - 5/2, -1/2)*(36*n^4 - 78*n^3 + 54*n^2 - 48*n + 24)/((n + 1)*n*(n - 1)) fi;

seq(a(n), n = 0..23); # Peter Luschny, May 16 2021

PROG

(Sage)

def a(n):

    if n < 2: return 1

    if n == 2: return 8

    return (3*n-2)*(1/n+1/2)*binomial(2*n-2, n-1)+6*(n-2)*binomial(2*n-4, n-2)+(n-1)*(3*n-8)/2/(2*n-3)*binomial(2*n-2, n-1)+sum(2*binomial(k, n-1)*(n+1+k) for k in range(n-1, 2*n-5))

print([a(n) for n in range(24)])

CROSSREFS

Cf. A344136 for the type A, A344228 for the type B.

Cf. also A344191, A344216 for similar sequences.

Cf. A344400 and A344401 for an alternative approach.

Cf. A007531.

Sequence in context: A295777 A319959 A270007 * A166789 A081901 A283686

Adjacent sequences:  A344318 A344319 A344320 * A344322 A344323 A344324

KEYWORD

nonn

AUTHOR

F. Chapoton, May 15 2021

EXTENSIONS

Better name from Peter Luschny, May 16 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 04:21 EST 2022. Contains 350565 sequences. (Running on oeis4.)