login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081901
A sequence related to binomial(n+5, 5).
2
1, 8, 49, 262, 1286, 5944, 26262, 111996, 464103, 1877904, 7446735, 29021490, 111405780, 422003520, 1579757580, 5851519704, 21468622077, 78087814776, 281798184573, 1009617794334, 3593281988754, 12710491403112, 44705999907666
OFFSET
0,2
COMMENTS
Binomial transform of A055852.
2nd binomial transform of binomial(n+5, 5).
3rd binomial transform of (1,5,10,10,5,1,0,0,0,...).
LINKS
FORMULA
a(n) = 3^n*(n^5 + 65*n^4 + 1385*n^3 + 11575*n^2 + 35574*n + 29160)/29160.
G.f.: (1 - 2*x)^5/(1 - 3*x)^6.
E.g.f.: (120 + 600*x + 600*x^2 + 200*x^3 + 25*x^4 + x^5)*exp(3*x)/120. - G. C. Greubel, Oct 18 2018
MATHEMATICA
LinearRecurrence[{18, -135, 540, -1215, 1458, -729}, {1, 8, 49, 262, 1286, 5944}, 50] (* G. C. Greubel, Oct 18 2018 *)
CoefficientList[Series[(1-2x)^5/(1-3x)^6, {x, 0, 30}], x] (* Harvey P. Dale, Oct 22 2024 *)
PROG
(PARI) x='x+O('x^30); Vec((1-2*x)^5/(1-3*x)^6) \\ G. C. Greubel, Oct 18 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^5/(1-3*x)^6)); // G. C. Greubel, Oct 18 2018
CROSSREFS
Cf. A081902.
Sequence in context: A354558 A344321 A166789 * A283686 A026389 A005059
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 31 2003
STATUS
approved