login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A sequence related to binomial(n+5, 5).
2

%I #16 Oct 22 2024 15:17:44

%S 1,8,49,262,1286,5944,26262,111996,464103,1877904,7446735,29021490,

%T 111405780,422003520,1579757580,5851519704,21468622077,78087814776,

%U 281798184573,1009617794334,3593281988754,12710491403112,44705999907666

%N A sequence related to binomial(n+5, 5).

%C Binomial transform of A055852.

%C 2nd binomial transform of binomial(n+5, 5).

%C 3rd binomial transform of (1,5,10,10,5,1,0,0,0,...).

%H G. C. Greubel, <a href="/A081901/b081901.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (18,-135,540,-1215,1458,-729).

%F a(n) = 3^n*(n^5 + 65*n^4 + 1385*n^3 + 11575*n^2 + 35574*n + 29160)/29160.

%F G.f.: (1 - 2*x)^5/(1 - 3*x)^6.

%F E.g.f.: (120 + 600*x + 600*x^2 + 200*x^3 + 25*x^4 + x^5)*exp(3*x)/120. - _G. C. Greubel_, Oct 18 2018

%t LinearRecurrence[{18, -135, 540, -1215, 1458, -729}, {1, 8, 49, 262, 1286, 5944}, 50] (* _G. C. Greubel_, Oct 18 2018 *)

%t CoefficientList[Series[(1-2x)^5/(1-3x)^6,{x,0,30}],x] (* _Harvey P. Dale_, Oct 22 2024 *)

%o (PARI) x='x+O('x^30); Vec((1-2*x)^5/(1-3*x)^6) \\ _G. C. Greubel_, Oct 18 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^5/(1-3*x)^6)); // _G. C. Greubel_, Oct 18 2018

%Y Cf. A081902.

%K nonn,easy

%O 0,2

%A _Paul Barry_, Mar 31 2003