login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343890
Coefficient triangle of generalized Laguerre polynomials n!*L(n,n+1,x) (rising powers of x).
1
1, 3, -1, 20, -10, 1, 210, -126, 21, -1, 3024, -2016, 432, -36, 1, 55440, -39600, 9900, -1100, 55, -1, 1235520, -926640, 257400, -34320, 2340, -78, 1, 32432400, -25225200, 7567560, -1146600, 95550, -4410, 105, -1, 980179200, -784143360, 249500160, -41583360, 3998400, -228480, 7616, -136, 1
OFFSET
0,2
FORMULA
T(n, k) = (-1)^k * n! * binomial(2*n+1,n-k)/k! = (-1)^k * (2*n+1)! * binomial(n,k)/(k+n+1)!.
EXAMPLE
The triangle begins:
1;
3, -1;
20, -10, 1;
210, -126, 21, -1;
3024, -2016, 432, -36, 1;
55440, -39600, 9900, -1100, 55, -1;
1235520, -926640, 257400, -34320, 2340, -78, 1;
MATHEMATICA
T[n_, k_] := (-1)^k * (2*n + 1)! * Binomial[n, k]/(k + n + 1)!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
PROG
(PARI) T(n, k) = (-1)^k*(2*n+1)!*binomial(n, k)/(k+n+1)!;
(PARI) row(n) = Vecrev(n!*pollaguerre(n, n+1));
CROSSREFS
Row sums (signed) give A343896, row sums (unsigned) give A343832.
Cf. A343861.
Sequence in context: A274075 A374651 A038455 * A067802 A181832 A139723
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, May 03 2021
STATUS
approved