login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A343813
Number of partitions of prime(n) containing at least one prime.
2
1, 2, 5, 12, 48, 88, 269, 450, 1176, 4355, 6558, 20958, 43412, 61733, 122194, 324532, 820827, 1107647, 2652517, 4655220, 6133664, 13751210, 23192039, 49730098, 132657130, 213646624, 270244858, 429702432, 540212859, 848899870, 3905568236, 5952945182, 11078643138
OFFSET
1,2
LINKS
FORMULA
a(n) = A235945(A000040(n)).
EXAMPLE
a(4) = 12 because there are 12 partitions of prime(4) = 7 that contain at least one prime. These partitions are [7], [5,2], [5,1,1], [4,3], [4,2,1], [3,3,1], [3,2,2], [3,2,1,1], [3,1,1,1,1], [2,2,2,1], [2,2,1,1,1], [2,1,1,1,1,1].
MATHEMATICA
nterms=20; Table[Total[Map[If[Count[#, _?PrimeQ]>0, 1, 0] &, IntegerPartitions[Prime[n]]]], {n, 1, nterms}]
PROG
(PARI) forprime(p=2, 59, my(m=0); forpart(X=p, for(k=1, #X, if(isprime(X[k]), m++; break))); print1(m, ", ")) \\ Hugo Pfoertner, Apr 30 2021
(PARI) seq(n)={my(p=primes(n), m=p[#p]); vecextract(Vec(1/eta(x+O(x*x^m)) - 1/prod(k=1, m, 1-if(!isprime(k), x^k) + O(x*x^m)), -m), p)} \\ Andrew Howroyd, Apr 30 2021
(Python)
from sympy.utilities.iterables import partitions
from sympy import sieve, prime
def A343813(n):
p = prime(n)
pset = set(sieve.primerange(2, p+1))
return sum(1 for d in partitions(p) if len(set(d)&pset) > 0) # Chai Wah Wu, May 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo Xausa, Apr 30 2021
STATUS
approved