login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343679
Lucasian pseudoprimes: composite numbers k such that 2^(k-1) == k+1 (mod k(2k+1)).
0
150851, 452051, 1325843, 1441091, 4974971, 5016191, 15139199, 19020191, 44695211, 101276579, 119378351, 128665319, 152814531, 187155383, 203789951, 223782263, 307367171, 387833531, 392534231, 470579831, 505473263, 546748931, 626717471, 639969891, 885510239, 974471243, 1147357559
OFFSET
1,1
COMMENTS
These are pseudoprimes k == 3 (mod 4) such that 2k+1 is prime.
Proof. Let q = 2k+1 be prime, where k == 3 (mod 4) is a pseudoprime. We have q == 7 (mod 8), so 2 is a square mod q, which gives 2^((q-1)/2) == 1 (mod q), by Euler's criterion. Thus, 2^k == 1 (mod q), which implies 2^(k-1) == (q+1)/2 (mod q), so that 2^(k-1) == k+1 (mod q). The conclusion that 2^(k-1) == k+1 (mod kq) follows from the assumption that k is a pseudoprime and from the Chinese remainder theorem. - Carl Pomerance (in a letter to the author), Apr 14 2021
Note that if p is a Lucasian prime, i.e., p == 3 (mod 4) with 2p+1 prime; then (2^p-1)/(2p+1) == 1 (mod p), hence 2^p-2p-2 == 0 (mod p(2p+1)), so 2^(p-1) == p+1 (mod p(2p+1)).
MATHEMATICA
Select[Range[10^7], CompositeQ[#] && PowerMod[2, #-1, #*(2*#+1)] == #+1 &] (* Amiram Eldar, Apr 26 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Apr 26 2021
EXTENSIONS
More terms from Amiram Eldar, Apr 26 2021
STATUS
approved