login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343675
Undulating alternating palindromic primes.
3
2, 3, 5, 7, 101, 181, 383, 727, 787, 929, 10301, 10501, 14341, 16361, 16561, 18181, 30103, 30703, 32323, 36563, 38183, 38783, 70507, 72727, 74747, 78787, 90709, 94949, 96769, 1074701, 1092901, 1212121, 1218121, 1412141, 1616161, 1658561, 1856581, 1878781, 3072703
OFFSET
1,1
COMMENTS
All terms have an odd number of decimal digits.
For n > 3, a(n) is odd and not divisible by 5.
Intersection of A002385, A030144 and A059168.
Subsequence of A343590.
EXAMPLE
16361 is a term as it is a palindromic prime, the digits 1, 6, 3, 6 and 1 have odd and even parity alternately, and also alternately rise and fall.
MATHEMATICA
Union@Flatten[{{2, 3, 5, 7}, Array[Select[FromDigits/@Riffle@@@Tuples[{Tuples[{1, 3, 5, 7, 9}, #], Tuples[{0, 2, 4, 6, 8}, #-1]}], (s=Union@Partition[Sign@Differences@IntegerDigits@#, 2]; (s=={{1, -1}}||s=={{-1, 1}})&&PrimeQ@#&&PalindromeQ@#)&]&, 4]}] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
PROG
(Python)
from sympy import isprime
def f(w):
for s in w:
for t in range(int(s[-1])+1, 10, 2):
yield s+str(t)
def g(w):
for s in w:
for t in range(1-int(s[-1])%2, int(s[-1]), 2):
yield s+str(t)
A343675_list = [2, 3, 5, 7]
for l in range(1, 9):
for d in '1379':
x = d
for i in range(1, l+1):
x = g(x) if i % 2 else f(x)
A343675_list.extend([int(p+p[-2::-1]) for p in x if isprime(int(p+p[-2::-1]))])
y = d
for i in range(1, l+1):
y = f(y) if i % 2 else g(y)
A343675_list.extend([int(p+p[-2::-1]) for p in y if isprime(int(p+p[-2::-1]))])
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Apr 25 2021
STATUS
approved