login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050784
Palindromic primes containing no pair of consecutive equal digits.
3
2, 3, 5, 7, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 12421, 12721, 12821, 13831, 13931, 14341, 14741, 15451, 16061, 16361, 16561, 17471, 17971, 18181, 18481, 19391, 19891, 30103, 30203
OFFSET
1,1
LINKS
MAPLE
nextL:= proc(L) local V, j, n, k;
n:= LinearAlgebra:-Dimension(L);
V:= L;
for j from n to 1 by -1 do
V[j]:= V[j]+1;
if j > 1 then if V[j] = V[j-1] then V[j]:= V[j]+1 fi
elif member(V[j], [2, 8]) then V[j]:= V[j]+1
elif member(V[j], [4, 5, 6]) then V[j]:= 7
fi;
if V[j] <= 9 then
for k from j+1 to n do if (k-j)::odd then V[k]:= 0 else V[k]:= 1 fi od;
return V
fi;
od;
Vector(n+1, i -> i mod 2)
end proc:
Pali:= proc(L)
local i, n;
n:= LinearAlgebra:-Dimension(L);
add(L[i]*10^(2*n-i-1), i=1..n)+add(L[i]*10^(i-1), i=1..n-1)
end proc:
V:= <5>: Res:= 2, 3, 5: count:= 3:
while count < 100 do
V:= nextL(V);
x:= Pali(V);
if isprime(x) then count:= count+1; Res:= Res, x fi;
od:
Res; # Robert Israel, Feb 07 2019
MATHEMATICA
Select[Prime[Range[3280]], Reverse[x=IntegerDigits[#]]==x&&FreeQ[Differences[x], 0]&] (* Jayanta Basu, Jun 01 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1999
STATUS
approved