login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342996
The number of partitions of the n-th primorial.
3
1, 2, 11, 5604, 9275102575355, 21565010821742923705373368869534441911701199887419
OFFSET
0,2
LINKS
FORMULA
a(n) = A000041(A002110(n)).
MAPLE
b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
a:= n-> combinat[numbpart](b(n)):
seq(a(n), n=0..5);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, b[n - 1]*Prime[n]];
a[n_] := PartitionsP[b[n]];
Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Jul 07 2021, from Maple *)
PROG
(Python)
from sympy import primorial
from sympy.functions import partition
def A342996(n): return partition(primorial(n)) if n > 0 else 1 # Chai Wah Wu, Apr 03 2021
(PARI) a(n) = numbpart(prod(k=1, n, prime(k))); \\ Michel Marcus, Jul 07 2021
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 01 2021
STATUS
approved