login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342871
a(n) = Sum_{k=1..n} floor(n^(1/k)), n >= 1.
1
1, 3, 5, 8, 10, 12, 14, 17, 20, 22, 24, 26, 28, 30, 32, 36, 38, 40, 42, 44, 46, 48, 50, 52, 55, 57, 60, 62, 64, 66, 68, 71, 73, 75, 77, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133
OFFSET
1,2
LINKS
Avid Rajai and David A. Corneth, Table of n, a(n) for n = 1..10000
FORMULA
Lim_{n->infinity} a(n)/n = 2.
a(n) = 2*n + sqrt(n) + O(n^(1/3)).
Lim_{n->infinity} (a(n)/n - 2)*sqrt(n) = 1.
a(n) = A043000(n) + 1 for n >= 2.
a(n) = A255165(n) + n for n >= 2.
a(n) = A089361(n) + 2*n - 1 for n >= 2.
a(n) = n + Sum_{i=1..floor(log_2(n))} floor(n^(1/i) - 1).
If n is in A001597 then a(A001597(m)) - a(A001597(m)-1) = 2 + A253642(m), otherwise a(n) - a(n-1) = 2.
2 <= a(n)/n <= 9/4 iff n >= 4.
1 <= (a(n)/n - 2)*sqrt(n) <= 27/16 iff n >= 27.
2*n + sqrt(n) < a(n) <= 2*n + (27/16)*sqrt(n) iff n >= 27.
MATHEMATICA
Table[Sum[Floor[n^(1/k)], {k, n}], {n, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
PROG
(PARI) a(n)=sum(k=1, n, sqrtnint(n, k)) \\ Andrew Howroyd, Mar 28 2021
(PARI) a(n) = if(n < 2, return(n)); my(c = logint(n, 2)); 2*n + sum(i = 2, c, sqrtnint(n, i)) - c \\ David A. Corneth, Mar 28 2021
(Python)
from sympy import integer_nthroot
def A342871(n):
c = 0
for k in range(1, n+1):
m = integer_nthroot(n, k)[0]
if m == 1:
return c+n-k+1
else:
c += m
return c # Chai Wah Wu, Apr 06 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Avid Rajai, Mar 28 2021
STATUS
approved