

A342811


Volume of the permutohedron obtained from the coordinates 1, 2, 4, ..., 2^(n1), multiplied by (n1)!.


1



1, 13, 1009, 354161, 496376001, 2632501072321, 52080136110870785, 3872046158193220660993, 1099175272489026844687825921, 1210008580962784935280673680079873, 5225407816779297641534116390319222362113
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Here the volume is relative to the unit cell of the lattice which is the intersection of Z^n with the hyperplane spanning the polytope.
a(n) is the number of subgraphs of the complete bipartite graph K_{n1,n} such that for any vertex from the 2nd part there is a matching that covers all other vertices; Postnikov calls the characterization of such subgraphs "the dragon marriage problem".


LINKS

Table of n, a(n) for n=2..12.
Alexander Postnikov, Permutohedra, Associahedra, and Beyond, International Mathematics Research Notices, 2009, 10261106; arXiv:math/0507163 [math.CO], 2005. See Example 5.5.


MATHEMATICA

a[n_] := Sum[(p.(2^Range[0, n1]))^(n1) / Times @@ Differences[p], {p, Permutations@Range@n}];
Table[a[n], {n, 2, 8}]


CROSSREFS

Cf. A066319 (analog for regular permutohedron), A087422, A227414, A342812.
Sequence in context: A267915 A096084 A203708 * A301870 A297739 A128685
Adjacent sequences: A342808 A342809 A342810 * A342812 A342813 A342814


KEYWORD

nonn


AUTHOR

Andrey Zabolotskiy, Mar 22 2021


STATUS

approved



