login
A342811
Volume of the permutohedron obtained from the coordinates 1, 2, 4, ..., 2^(n-1), multiplied by (n-1)!.
1
1, 13, 1009, 354161, 496376001, 2632501072321, 52080136110870785, 3872046158193220660993, 1099175272489026844687825921, 1210008580962784935280673680079873, 5225407816779297641534116390319222362113
OFFSET
2,2
COMMENTS
Here the volume is relative to the unit cell of the lattice which is the intersection of Z^n with the hyperplane spanning the polytope.
a(n) is the number of subgraphs of the complete bipartite graph K_{n-1,n} such that for any vertex from the 2nd part there is a matching that covers all other vertices; Postnikov calls the characterization of such subgraphs "the dragon marriage problem".
LINKS
Alexander Postnikov, Permutohedra, Associahedra, and Beyond, International Mathematics Research Notices, 2009, 1026-1106; arXiv:math/0507163 [math.CO], 2005. See Example 5.5.
MATHEMATICA
a[n_] := Sum[(p.(2^Range[0, n-1]))^(n-1) / Times @@ Differences[p], {p, Permutations@Range@n}];
Table[a[n], {n, 2, 8}]
CROSSREFS
Cf. A066319 (analog for regular permutohedron), A087422, A227414, A342812.
Sequence in context: A358983 A096084 A203708 * A301870 A297739 A128685
KEYWORD
nonn
AUTHOR
Andrey Zabolotskiy, Mar 22 2021
STATUS
approved