login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342721
a(n) is the number of concave integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 3, 1, 1, 0, 0, 1, 3, 0, 0, 0, 2, 1, 0, 6, 0, 4, 4, 2, 1, 0, 0, 1, 0, 0, 6, 0, 2, 8, 6, 2, 0, 1, 2, 0, 2, 0, 9, 0, 0, 2, 0, 13, 1, 0, 4, 0, 3, 0, 3, 5, 10, 11
OFFSET
1,17
COMMENTS
Without loss of generality we assume that a is the largest side length and that the diagonal e divides the concave quadrilateral into two triangles with sides a,b,e and c,d,e. Then e < a is a necessary condition for concavity. The triangle inequality further implies e > a-b and abs(e-c) < d < e+c.
EXAMPLE
a(66)=1 because the only concave integer quadrilateral with longest edge length 66 and integer area has sides a=66, b=55, c=12, d=65, diagonals e=55, f=65 and area 1650.
MATHEMATICA
an={};
area[a_, b_, c_, d_, e_, f_]:=(1/4)Sqrt[(4e^2 f^2-(a^2+c^2-b^2-d^2)^2)]
he[a_, b_, e_]:=(1/(2 e))Sqrt[(-((a-b-e) (a+b-e) (a-b+e) (a+b+e)))];
paX[e_]:={e, 0} (*vertex A coordinate*)
pbX[a_, b_, e_]:={(-a^2+b^2+e^2)/(2 e), he[a, b, e]}(*vertex B coordinate*)
pc={0, 0}; (*vertex C coordinate*)
pdX[c_, d_, e_]:={(c^2-d^2+e^2)/(2 e), -he[c, d, e]}(*vertex D coordinate*)
concaveQ[{bx_, by_}, {dx_, dy_}, e_]:=If[by dx-bx dy<0||by dx-bx dy>(by-dy) e, True, False]
gQ[x_, y_]:=Module[{z=x-y, res=False}, Do[If[z[[i]]>0, res=True; Break[], If[z[[i]]<0, Break[]]], {i, 1, 4}]; res]
canonicalQ[{a_, b_, c_, d_}]:=Module[{m={a, b, c, d}}, If[(gQ[{b, a, d, c}, m]||gQ[{d, c, b, a}, m]||gQ[{c, d, a, b}, m]), False, True]]
Do[cnt=0;
Do[pa=paX[e]; pb=pbX[a, b, e]; pd=pdX[c, d, e];
If[(f=Sqrt[(pb-pd).(pb-pd)]; IntegerQ[f])&&(ar=area[a, b, c, d, e, f]; IntegerQ[ar])&&concaveQ[pb, pd, e]&&canonicalQ[{a, b, c, d}], cnt++
(*; Print[{{a, b, c, d, e, f, ar}, Graphics[Line[{pa, pb, pc, pd, pa}]]}]*)],
{b, 1, a}, {e, a-b+1, a-1}, {c, 1, a}, {d, Abs[e-c]+1, Min[a, e+c-1]}];
AppendTo[an, cnt], {a, 1, 75}
]
an
CROSSREFS
Cf. A340858 for trapezoids, A342720 for concave integer quadrilaterals with arbitrary area.
Sequence in context: A329265 A130209 A109127 * A263456 A002284 A016424
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Mar 19 2021
STATUS
approved