login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263456 Expansion of phi(-q) * f(-q^8)^3 / f(-q^24) in powers of q where phi(), f() are Ramanujan theta functions. 3
1, -2, 0, 0, 2, 0, 0, 0, -3, 4, 0, 0, -6, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, -14, 0, 0, 12, 0, 0, 0, -3, 0, 0, 0, -4, 0, 0, 0, 12, 6, 0, 0, -6, 0, 0, 0, -6, -14, 0, 0, 0, 0, 0, 0, -6, 24, 0, 0, 0, 0, 0, 0, 2, 12, 0, 0, -6, 0, 0, 0, -12, -24, 0, 0, 12, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q)^2 * eta(q^8)^3 / (eta(q^2) * eta(q^24)) in powers of q.

Euler transform of period 24 sequence [ -2, -1, -2, -1, -2, -1, -2, -4, -2, -1, -2, -1, -2, -1, -2, -4, -2, -1, -2, -1, -2, -1, -2, -3, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 279936^(1/2) (t/I)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263452.

a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = a(9*n + 6) = 0.

EXAMPLE

G.f. = 1 - 2*x + 2*x^4 - 3*x^8 + 4*x^9 - 6*x^12 + 2*x^16 + 6*x^17 - 14*x^25 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] QPochhammer[ q^8]^3 / QPochhammer[ q^24], {q, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^3 / (eta(x^2 + A) * eta(x^24 + A)), n))};

CROSSREFS

Cf. A263452.

Sequence in context: A329265 A130209 A109127 * A002284 A016424 A108913

Adjacent sequences:  A263453 A263454 A263455 * A263457 A263458 A263459

KEYWORD

sign

AUTHOR

Michael Somos, Oct 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 15:40 EDT 2020. Contains 336200 sequences. (Running on oeis4.)