login
A342720
a(n) is the number of concave integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d) and integer diagonals e,f.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 3, 1, 2, 2, 3, 1, 4, 2, 4, 2, 5, 3, 7, 1, 2, 4, 3, 13, 7, 20, 12, 5, 3, 7, 10, 3, 8, 2, 14, 12, 10, 15, 17, 8, 11, 10, 20, 13, 15, 10, 45, 9, 18, 25, 46, 38, 18, 2, 25, 20, 30, 18, 32, 17, 32, 43
OFFSET
1,17
COMMENTS
Without loss of generality we assume that a is the largest side length and that the diagonal e divides the concave quadrilateral into two triangles with sides a,b,e and c,d,e. Then e < a is a necessary condition for concavity. The triangle inequality further implies e > a-b and abs(e-c) < d < e+c.
EXAMPLE
a(15)=1 because the only concave integer quadrilateral with longest edge length 15 has a=15, b=13, c=13, d=15 and diagonals e=4 and f=24. a(20)=3 because there are three solutions (a,b,c,d,e,f): (20,13,15,18,9,26), (20,13,13,20,11,24) and {20,15,15,20,7,24}.
MATHEMATICA
an={};
he[a_, b_, e_]:=1/(2 e) Sqrt[(-((a-b-e) (a+b-e) (a-b+e) (a+b+e)))]
paX[e_]:={e, 0} (*vertex A coordinate*)
pbX[a_, b_, e_]:={(-a^2+b^2+e^2)/(2 e), he[a, b, e]}(*vertex B coordinate*)
pc={0, 0}; (*vertex C coordinate*)
pdX[c_, d_, e_]:={(c^2-d^2+e^2)/(2 e), -he[c, d, e]}(*vertex D coordinate*)
concaveQ[{bx_, by_}, {dx_, dy_}, e_]:=If[by dx-bx dy<0||by dx-bx dy>(by-dy) e, True, False]
gQ[x_, y_]:=Module[{z=x-y, res=False}, Do[If[z[[i]]>0, res=True; Break[],
If[z[[i]]<0, Break[]]], {i, 1, 4}]; res]
canonicalQ[{a_, b_, c_, d_}]:=Module[{m={a, b, c, d}}, If[(gQ[{b, a, d, c}, m]||gQ[{d, c, b, a}, m]||gQ[{c, d, a, b}, m]), False, True]]
Do[cnt=0;
Do[pa=paX[e]; pb=pbX[a, b, e]; pd=pdX[c, d, e];
If[(f=Sqrt[(pb-pd).(pb-pd)]; IntegerQ[f])&&concaveQ[pb, pd, e]&&canonicalQ[{a, b, c, d}], cnt++
(*; Print[{{a, b, c, d, e, f}, Graphics[Line[{pa, pb, pc, pd, pa}]]}]*)],
{b, 1, a}, {e, a-b+1, a-1}, {c, 1, a}, {d, Abs[e-c]+1, Min[a, e+c-1]}];
AppendTo[an, cnt],
{a, 1, 75}
]
an
CROSSREFS
Cf. A340858 for trapezoids, A342721 for concave integer quadrilaterals with integer area.
Sequence in context: A239928 A114912 A231723 * A029274 A239498 A079219
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Mar 19 2021
STATUS
approved