OFFSET
1,2
COMMENTS
Equivalently, Niven numbers that are divisible by their nonzero digits. A Niven number (A005349) is a number that is divisible by the sum of its digits.
Niven numbers without zero digit that are divisible by their individual digits are in A051004.
Differs from super Niven numbers, the first 25 terms are the same, then A328273(26) = 120 while a(26) = 111.
This sequence is infinite since if m is a term, then 10*m is another term.
EXAMPLE
102 is divisible by its nonzero digits 1 and 2, and 102 is also divisible by the sum of its digits 1 + 0 + 2 = 3, then 102 is a term.
MATHEMATICA
q[n_] := AllTrue[(d = IntegerDigits[n]), # == 0 || Divisible[n, #] &] && Divisible[n, Plus @@ d]; Select[Range[500], q] (* Amiram Eldar, Mar 18 2021 *)
PROG
(PARI) isok(m) = if (!(m % sumdigits(m)), my(d=select(x->(x>0), Set(digits(m)))); setintersect(d, divisors(m)) == d); \\ Michel Marcus, Mar 18 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Mar 18 2021
STATUS
approved