|
|
A342647
|
|
Decimal expansion of Sum_{n>=1} log(cos(1/n)) * log(sin(1/n)).
|
|
0
|
|
|
5, 8, 8, 2, 5, 1, 4, 3, 3, 9, 6, 8, 1, 6, 3, 5, 6, 4, 7, 4, 1, 7, 8, 3, 1, 1, 7, 9, 4, 2, 5, 3, 1, 4, 3, 7, 2, 2, 8, 4, 7, 5, 7, 2, 7, 7, 6, 2, 5, 5, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
log(cos(1/n)) ~ -1/(2*n^2) when n -> oo, so the series log(cos(1/n)) is convergent (A336603), but
log(sin(1/n)) ~ -log(n) when n -> oo, so the series log(sin(1/n)) is divergent.
However, as log(cos(1/n)) * log(sin(1/n)) ~ log(n)/(2*n^2) when n -> oo, the series log(cos(1/n)) * log(sin(1/n)) is convergent.
|
|
REFERENCES
|
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.1.f p. 279.
|
|
LINKS
|
|
|
FORMULA
|
Equals Sum_{n>=1} log(cos(1/n)) * log(sin(1/n)).
|
|
EXAMPLE
|
0.588251433968163564741783117942531437228475727762559...
|
|
PROG
|
(PARI) sumpos(n=1, log(cos(1/n)) * log(sin(1/n))) \\ Michel Marcus, Mar 18 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|