OFFSET
0,29
COMMENTS
These lists can be read as an irregular table, where row r lists the respective coordinates of the points on the sphere with radius R = sqrt(r); their number (i.e., the row length) is given by A005875 = (1, 6, 12, 8, 6, 24, 24, 0, 12, 30, ...). - M. F. Hasler, Apr 27 2021
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 0..10130
EXAMPLE
n x y z R^2 phi/Pi
0 0 0 0 0 0.000
1 0 0 -1 1 0.000
2 1 0 0 1 0.000
3 0 1 0 1 0.500
4 -1 0 0 1 1.000
5 0 -1 0 1 1.500
6 0 0 1 1 0.000
7 1 0 -1 2 0.000
8 0 1 -1 2 0.500
9 -1 0 -1 2 1.000
10 0 -1 -1 2 1.500
11 1 1 0 2 0.250
12 -1 1 0 2 0.750
13 -1 -1 0 2 1.250
14 1 -1 0 2 1.750
15 1 0 1 2 0.000
16 0 1 1 2 0.500
17 -1 0 1 2 1.000
18 0 -1 1 2 1.500
19 1 1 -1 3 0.250
20 -1 1 -1 3 0.750
21 -1 -1 -1 3 1.250
22 1 -1 -1 3 1.750
23 1 1 1 3 0.250
24 -1 1 1 3 0.750
25 -1 -1 1 3 1.250
26 1 -1 1 3 1.750
27 0 0 -2 4 0.000
28 2 0 0 4 0.000
29 0 2 0 4 0.500
PROG
(PARI) shell(n, Q=Qfb(1, 0, 1), L=List())={for(z=if(n, sqrtint((n-1)\3)+1), sqrtint(n), my(S=if(n>z^2, Set(apply(vecsort, abs(qfbsolve(Q, n-z^2, 3)))), [[0, 0]])); foreach(S, s, forperm(concat(s, z), p, listput(L, p)))); for(i=1, 3, for(j=1, #L, my(X=L[j]); (X[i]*=-1) && listput(L, X))); vecsort(L, (p, q)->if( p[3]!=q[3], p[3]-q[3], p[1]==q[1], q[2]-p[2], p[2]*q[2]<0, q[2]-p[2], (q[1]-p[1])*(p[2]+q[2])))} \\ Gives list of all points with Euclidean norm sqrt(n).
A342561_vec=concat([[P[1] | P <- shell(n)] | n<-[0..7]]) \\ M. F. Hasler, Apr 27 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Hugo Pfoertner, Apr 27 2021
STATUS
approved