login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342561
List points (x,y,z) having integer coordinates, sorted first by R^2 = x^2 + y^2 + z^2 and in case of ties, then by z and last by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.
7
0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 0, 2, 0, -2, 0, 0, 1, 0, -1, 0, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, 0, -2, 0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 1, -1, -2, -2, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 1, -1, -1, 1, 2, 0, -2, 0, 2, -2, -2, 2, 2, 0, -2, 0
OFFSET
0,29
COMMENTS
This is a 3-dimensional generalization of A305575 and A305576.
y-coordinates are in A342562, z-coordinates are in A342563.
These lists can be read as an irregular table, where row r lists the respective coordinates of the points on the sphere with radius R = sqrt(r); their number (i.e., the row length) is given by A005875 = (1, 6, 12, 8, 6, 24, 24, 0, 12, 30, ...). - M. F. Hasler, Apr 27 2021
LINKS
EXAMPLE
n x y z R^2 phi/Pi
0 0 0 0 0 0.000
1 0 0 -1 1 0.000
2 1 0 0 1 0.000
3 0 1 0 1 0.500
4 -1 0 0 1 1.000
5 0 -1 0 1 1.500
6 0 0 1 1 0.000
7 1 0 -1 2 0.000
8 0 1 -1 2 0.500
9 -1 0 -1 2 1.000
10 0 -1 -1 2 1.500
11 1 1 0 2 0.250
12 -1 1 0 2 0.750
13 -1 -1 0 2 1.250
14 1 -1 0 2 1.750
15 1 0 1 2 0.000
16 0 1 1 2 0.500
17 -1 0 1 2 1.000
18 0 -1 1 2 1.500
19 1 1 -1 3 0.250
20 -1 1 -1 3 0.750
21 -1 -1 -1 3 1.250
22 1 -1 -1 3 1.750
23 1 1 1 3 0.250
24 -1 1 1 3 0.750
25 -1 -1 1 3 1.250
26 1 -1 1 3 1.750
27 0 0 -2 4 0.000
28 2 0 0 4 0.000
29 0 2 0 4 0.500
PROG
(PARI) shell(n, Q=Qfb(1, 0, 1), L=List())={for(z=if(n, sqrtint((n-1)\3)+1), sqrtint(n), my(S=if(n>z^2, Set(apply(vecsort, abs(qfbsolve(Q, n-z^2, 3)))), [[0, 0]])); foreach(S, s, forperm(concat(s, z), p, listput(L, p)))); for(i=1, 3, for(j=1, #L, my(X=L[j]); (X[i]*=-1) && listput(L, X))); vecsort(L, (p, q)->if( p[3]!=q[3], p[3]-q[3], p[1]==q[1], q[2]-p[2], p[2]*q[2]<0, q[2]-p[2], (q[1]-p[1])*(p[2]+q[2])))} \\ Gives list of all points with Euclidean norm sqrt(n).
A342561_vec=concat([[P[1] | P <- shell(n)] | n<-[0..7]]) \\ M. F. Hasler, Apr 27 2021
CROSSREFS
Cf. A343630, A340631, A340632, A343633 for a variant which "connects" corresponding poles of successive shells, A343640, A340641, A340642, A343643 for a square spiral variant.
Sequence in context: A325135 A263577 A343631 * A342562 A343632 A067109
KEYWORD
sign
AUTHOR
Hugo Pfoertner, Apr 27 2021
STATUS
approved