OFFSET
1,1
COMMENTS
No term can end in 0 or 1 as that would result in the last digit of a(n-1)*a(n) being the same as a(n)'s last digit. The majority of terms appear to grow linearly with n but occasional large spikes in the values also occur, e.g. a(47888) = 425956849. See the examples. It is unknown if the sequence is infinite.
EXAMPLE
a(2) = 3 as a(1)*3 = 2*3 = 6 which shares no digit with a(1) = 2 or 3.
a(9) = 42 as a(8)*42 = 9*42 = 378 which shares no digit with a(8) = 9 or 42.
a(10) = 14 as a(9)*14 = 42*14 = 588 which shares no digit with a(9) = 42 or 14.
a(47888) = 425956849 as a(47887)*425956849 = 258649*425956849 = 110173313037001 which shares no digit with a(47887) = 258649 or 425956849.
PROG
(Python)
def aupton(terms):
alst, aset = [2], {2}
while len(alst) < terms:
an, anm1_digs = 2, set(str(alst[-1]))
while True:
while an in aset: an += 1
if (set(str(an)) | anm1_digs) & set(str(an*alst[-1])) == set():
alst.append(an); aset.add(an); break
an += 1
return alst
print(aupton(74)) # Michael S. Branicky, Mar 20 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Scott R. Shannon, Mar 12 2021
STATUS
approved