The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342223 Product_{n>=1} 1 + a(n)*x^n = Sum_{n=-oo..oo} x^(n^2) = theta_3(x). 0
 2, 0, 0, 2, -4, 8, -16, 32, -54, 108, -184, 368, -628, 1296, -2160, 4610, -7708, 15848, -27592, 58316, -98496, 207576, -364720, 756872, -1341970, 2778300, -4918536, 10443152, -18512788, 37698416, -69273664, 145105952, -258224544, 534996900, -981494752, 2020011290, -3714566308, 7614288360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Coefficients in the power product expansion for theta_3(x), the third Jacobi theta function, described in A000122, also denoted theta_3(0, x) or theta_00(1, x). See A147541 for additional references. a(9) = -54 is the first term whose absolute value is not a power of 2. REFERENCES Bill Gosper and Joerg Arndt, Discussions in Math-Fun Mailing List, circa Feb 25 2021 - Mar 2 2021. LINKS Table of n, a(n) for n=1..38. H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161. EXAMPLE This gives 1 + 2x + 2x^4 + 2x^9 + ... = (1+2x)*(1+2x^4)*(1-4x^5)*(1+8x^6)*... To compute this sequence's terms, start with the series expansion 1 + 2x + 2x^4 + 2x^9 + ...; this gives a(1) = 2, then divide by 1 + a(1)*x to get 1 + 2x^4 - 4x^5 + 8x^6 - 16x^7 ...; this gives a(2) = a(3) = 0 and a(4) = 2, then divide by 1 + a(4)*x to get 1 - 4x^5 + 8x^6 - 16x^7 ...; this gives a(5) = -4, then divide by 1 + a(5)*x to get 1 + 8x^6 - 16x^7 ... MATHEMATICA FoldPairList[{Coefficient[#1, q^#2], #1/(1 + q^#2 Coefficient[#1, q^#2])} &, #, Range[#[[5]] - 1]] &[Series[EllipticTheta[3, 0, q], {q, 0, 100}]] (* based on code from Bill Gosper, Feb 25 2021 *) CROSSREFS Cf. A000122, A147541, A147542. Sequence in context: A141416 A176787 A127862 * A223142 A244522 A292945 Adjacent sequences: A342220 A342221 A342222 * A342224 A342225 A342226 KEYWORD sign AUTHOR Neil Bickford, Mar 06 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 06:17 EST 2023. Contains 367422 sequences. (Running on oeis4.)