|
|
A341977
|
|
Number of partitions of n into 6 distinct primes (counting 1 as a prime).
|
|
10
|
|
|
1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 5, 0, 4, 1, 5, 2, 8, 1, 7, 2, 8, 4, 12, 2, 12, 6, 14, 7, 17, 5, 18, 8, 20, 11, 26, 10, 27, 15, 30, 18, 36, 17, 36, 22, 41, 28, 48, 25, 49, 35, 56, 40, 61, 38, 64, 50, 73, 56, 77, 54, 82, 70, 93, 74, 96, 78, 106, 92, 114, 100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
29,7
|
|
LINKS
|
|
|
MAPLE
|
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<0, 0, (p-> `if`(p>n, 0, x*b(n-p, i-1)))(
`if`(i=0, 1, ithprime(i)))+b(n, i-1))), x, 7)
end:
a:= n-> coeff(b(n, numtheory[pi](n)), x, 6):
|
|
MATHEMATICA
|
m = 6;
b[n_, i_] := b[n, i] = Series[If[n == 0, 1,
If[i < 0, 0, Function[p, If[p > n, 0, x*b[n - p, i - 1]]][
If[i == 0, 1, Prime[i]]] + b[n, i - 1]]], {x, 0, m + 1}];
a[n_] := Coefficient[b[n, PrimePi[n]], x, m];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|