|
|
A029225
|
|
Expansion of 1/((1-x^2)(1-x^6)(1-x^11)(1-x^12)).
|
|
1
|
|
|
1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 1, 4, 1, 4, 1, 4, 2, 6, 2, 6, 2, 7, 4, 10, 4, 10, 4, 11, 6, 14, 6, 14, 7, 16, 10, 20, 10, 20, 11, 22, 14, 26, 14, 27, 16, 30, 20, 35, 20, 36, 22, 39, 26, 44, 27, 46, 30, 50, 35, 56, 36, 58, 39, 62
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
Number of partitions of n into parts 2, 6, 11, and 12. - Vincenzo Librandi, Jun 02 2014
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1, 1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1).
|
|
FORMULA
|
G.f.: 1/((1-x^2)*(1-x^6)*(1-x^11)*(1-x^12)).
a(n) = a(n-2)+a(n-6)-a(n-8)+a(n-11)+a(n-12)-a(n-13)-a(n-14)-a(n-17)-a(n-18)+a(n-19)+a(n-20)-a(n-23)+a(n-25)+a(n-29)-a(n-31). (End)
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1 - x^2) (1 - x^6) (1 - x^11) (1 - x^12)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 02 2014 *)
|
|
PROG
|
(PARI) Vec(1/((1-x^2)*(1-x^6)*(1-x^11)*(1-x^12)) + O(x^80)) \\ Jinyuan Wang, Mar 15 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|