login
A029223
Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^12)).
1
1, 0, 1, 0, 1, 0, 2, 0, 2, 1, 2, 1, 4, 1, 4, 2, 4, 2, 7, 2, 7, 4, 7, 4, 11, 4, 11, 7, 11, 7, 16, 7, 16, 11, 16, 11, 23, 11, 23, 16, 23, 16, 31, 16, 31, 23, 31, 23, 41, 23, 41, 31, 41, 31, 53, 31, 53, 41, 53, 41, 67, 41, 67, 53
OFFSET
0,7
COMMENTS
Number of partitions of n into parts 2, 6, 9, and 12. - Joerg Arndt, Jun 02 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 1, 0, -1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, -1, 0, 1, 0, 0, 0, 1, 0, -1).
MATHEMATICA
CoefficientList[Series[1/((1 - x^2) (1 - x^6) (1 - x^9) (1 - x^12)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 02 2014 *)
PROG
(PARI) Vec(1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^12)) + O(x^80)) \\ Jinyuan Wang, Mar 15 2020
CROSSREFS
Sequence in context: A025814 A029354 A035434 * A305576 A129679 A319514
KEYWORD
nonn,easy
STATUS
approved