login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341747
Decimal expansion of zeta(3) * zeta(4) * Product_{p prime} (1 + 1/p^2 - 2/p^3 - 2/p^5 + 2/p^6).
1
1, 3, 8, 6, 9, 2, 4, 1, 7, 0, 4, 1, 3, 5, 6, 5, 8, 6, 8, 9, 8, 8, 1, 4, 9, 1, 9, 7, 6, 6, 5, 1, 0, 6, 8, 3, 6, 1, 6, 5, 2, 6, 2, 0, 7, 8, 2, 6, 3, 9, 2, 9, 9, 1, 7, 4, 1, 1, 3, 7, 0, 1, 5, 8, 1, 3, 7, 2, 6, 0, 2, 1, 5, 6, 6, 1, 7, 6, 7, 9, 2, 2, 6, 3, 4, 1, 2
OFFSET
1,2
COMMENTS
The constant c in the asymptotic formulas Sum_{n1, n2 <= x} sigma(lcm(n1, n2)) = c * x^4/4 + O(x^(7/2 + eps)) and Sum_{n1, n2 <= x} sigma(lcm(n1, n2))/(n1*n2) = c * x^2 + O(x^(3/2 + eps)).
LINKS
Titus Hilberdink and László Tóth, On the average value of the least common multiple of k positive integers, Journal of Number Theory, Vol. 169 (2016), pp. 327-341. See p. 333.
EXAMPLE
1.38692417041356586898814919766510683616526207826392...
MATHEMATICA
$MaxExtraPrecision = 1500; m = 1500; c = LinearRecurrence[{0, -1, 2, 0, 2, -2}, {0, 2, -6, -2, 0, 2}, m]; Zeta[3] * Zeta[4] * Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]]
PROG
(PARI) zeta(3) * zeta(4) * prodeulerrat(1 + 1/p^2 - 2/p^3 - 2/p^5 + 2/p^6)
CROSSREFS
Cf. A000203 (sigma), A240976, A341748.
Sequence in context: A152683 A154199 A083700 * A242672 A021725 A371472
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Feb 18 2021
STATUS
approved