login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341665
Primes p such that p^5 - 1 has 8 divisors.
1
7, 23, 83, 227, 263, 359, 479, 503, 563, 1187, 2999, 3803, 4703, 4787, 4919, 5939, 6599, 8819, 10667, 14159, 16139, 16187, 18119, 21227, 22943, 25847, 26003, 26903, 27827, 29123, 29339, 29663, 36263, 43403, 44519, 44963, 46199, 47123, 48947, 49103, 49499
OFFSET
1,1
COMMENTS
For each term p, p^5 - 1 = (p-1)*(p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^4 + p^3 + p^2 + p + 1 = r.
Conjecture: sequence is infinite.
EXAMPLE
p = factorization
n a(n) p^5 - 1 of (p^5 - 1)
- ---- -------------- ---------------------
1 7 16806 2 * 3 * 2801
2 23 6436342 2 * 11 * 292561
3 83 3939040642 2 * 41 * 48037081
4 227 602738989906 2 * 113 * 2666986681
5 263 1258284197542 2 * 131 * 4802611441
6 359 5963102065798 2 * 179 * 16656709681
7 479 25216079618398 2 * 239 * 52753304641
8 503 32198817702742 2 * 251 * 64141071121
...
MATHEMATICA
Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^5 - 1] == 8 &] (* Amiram Eldar, Feb 26 2021 *)
PROG
(PARI) isok(p) = isprime(p) && (numdiv(p^5-1) == 8); \\ Michel Marcus, Feb 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 26 2021
STATUS
approved