OFFSET
1,1
COMMENTS
For each term p, p^5 - 1 = (p-1)*(p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^4 + p^3 + p^2 + p + 1 = r.
Conjecture: sequence is infinite.
EXAMPLE
p = factorization
n a(n) p^5 - 1 of (p^5 - 1)
- ---- -------------- ---------------------
1 7 16806 2 * 3 * 2801
2 23 6436342 2 * 11 * 292561
3 83 3939040642 2 * 41 * 48037081
4 227 602738989906 2 * 113 * 2666986681
5 263 1258284197542 2 * 131 * 4802611441
6 359 5963102065798 2 * 179 * 16656709681
7 479 25216079618398 2 * 239 * 52753304641
8 503 32198817702742 2 * 251 * 64141071121
...
MATHEMATICA
Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^5 - 1] == 8 &] (* Amiram Eldar, Feb 26 2021 *)
PROG
(PARI) isok(p) = isprime(p) && (numdiv(p^5-1) == 8); \\ Michel Marcus, Feb 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 26 2021
STATUS
approved