login
A341666
Primes p such that p^6 - 1 has 384 divisors.
1
29, 43, 59, 83, 157, 193, 317, 1093, 1373, 1523, 2803, 3557, 3677, 3733, 12227, 13093, 20507, 25933, 28163, 29243, 32443, 33493, 38603, 53917, 100523, 109883, 122117, 134363, 140197, 190573, 236723, 242773, 249397, 256757, 258403, 274237, 299723, 333283
OFFSET
1,1
COMMENTS
Conjecture: sequence is infinite.
For every term p, p^6 - 1 is of the form 2^3 * 3^2 * 7 * q * r * s * t, where q, r, s, and t are distinct primes > 7, with four exceptions: p = 29, 59, 193, and 1373 (see Example section).
EXAMPLE
p =
n a(n) factorization of p^6 - 1
- ---- ------------------------------------------------------
1 29 2^3 * 3^2 * 5 * 7 * 13 * 67 * 271
2 43 2^3 * 3^2 * 7 * 11 * 13 * 139 * 631
3 59 2^3 * 3^2 * 5 * 7 * 29 * 163 * 3541
4 83 2^3 * 3^2 * 7 * 19 * 41 * 367 * 2269
5 157 2^3 * 3^2 * 7 * 13 * 79 * 3499 * 8269
6 193 2^7 * 3^2 * 7 * 97 * 1783 * 37057
7 317 2^3 * 3^2 * 7 * 53 * 79 * 14401 * 33391
8 1093 2^3 * 3^2 * 7 * 13 * 547 * 398581 * 1193557
9 1373 2^3 * 3^2 * 7^3 * 229 * 627919 * 1886503
MATHEMATICA
Select[Range[350000], PrimeQ[#] && DivisorSigma[0, #^6 - 1] == 384 &] (* Amiram Eldar, Feb 27 2021 *)
PROG
(PARI) isok(p) = isprime(p) && (numdiv(p^6-1) == 384); \\ Michel Marcus, Feb 27 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 26 2021
STATUS
approved