login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p^5 - 1 has 8 divisors.
1

%I #11 Mar 04 2021 01:42:42

%S 7,23,83,227,263,359,479,503,563,1187,2999,3803,4703,4787,4919,5939,

%T 6599,8819,10667,14159,16139,16187,18119,21227,22943,25847,26003,

%U 26903,27827,29123,29339,29663,36263,43403,44519,44963,46199,47123,48947,49103,49499

%N Primes p such that p^5 - 1 has 8 divisors.

%C For each term p, p^5 - 1 = (p-1)*(p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^4 + p^3 + p^2 + p + 1 = r.

%C Conjecture: sequence is infinite.

%e p = factorization

%e n a(n) p^5 - 1 of (p^5 - 1)

%e - ---- -------------- ---------------------

%e 1 7 16806 2 * 3 * 2801

%e 2 23 6436342 2 * 11 * 292561

%e 3 83 3939040642 2 * 41 * 48037081

%e 4 227 602738989906 2 * 113 * 2666986681

%e 5 263 1258284197542 2 * 131 * 4802611441

%e 6 359 5963102065798 2 * 179 * 16656709681

%e 7 479 25216079618398 2 * 239 * 52753304641

%e 8 503 32198817702742 2 * 251 * 64141071121

%e ...

%t Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^5 - 1] == 8 &] (* _Amiram Eldar_, Feb 26 2021 *)

%o (PARI) isok(p) = isprime(p) && (numdiv(p^5-1) == 8); \\ _Michel Marcus_, Feb 26 2021

%Y Cf. A000005, A000040, A309906, A341664.

%K nonn

%O 1,1

%A _Jon E. Schoenfield_, Feb 26 2021