login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341516
The Collatz or 3x+1 function T (A014682) conjugated by unary-binary-encoding (A156552).
3
1, 3, 2, 6, 3, 7, 5, 12, 4, 27, 7, 14, 11, 75, 6, 24, 13, 35, 17, 54, 10, 147, 19, 28, 9, 363, 8, 150, 23, 13, 29, 48, 14, 507, 15, 70, 31, 867, 22, 108, 37, 343, 41, 294, 12, 1083, 43, 56, 25, 63, 26, 726, 47, 175, 21, 300, 34, 1587, 53, 26, 59, 2523, 20, 96, 33, 847, 61, 1014, 38, 243, 67, 140, 71, 2883, 18, 1734
OFFSET
1,2
COMMENTS
Collatz-conjecture can be formulated via this sequence by postulating that all iterations of a(n), starting from any n > 1, will eventually end reach the cycle [2, 3].
FORMULA
If n is odd, then a(n) = A064989(n), otherwise a(n) = A064989(A329603(n)).
a(n) = A005940(1+A014682(A156552(n))).
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A329603(n) = A005940(2+(3*A156552(n)));
A341516(n) = if(n%2, A064989(n), A064989(A329603(n)));
CROSSREFS
Cf. A341515 for a variant.
Sequence in context: A038572 A334667 A245676 * A060992 A064455 A141619
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2021
STATUS
approved